5,373 research outputs found

    Love in Extrema Ratio

    Full text link
    The tidal deformability of a self-gravitating object leaves an imprint on the gravitational-wave signal of an inspiral which is paramount to measure the internal structure of the binary components. We unveil here a surprisingly unnoticed effect: in the extreme-mass ratio limit the tidal Love number of the central object (i.e. the quadrupole moment induced by the tidal field of its companion) affects the gravitational waveform at the leading order in the mass ratio. This effect acts as a magnifying glass for the tidal deformability of supermassive objects but was so far neglected, probably because the tidal Love numbers of a black hole (the most natural candidate for a compact supermassive object) are identically zero. We argue that extreme-mass ratio inspirals detectable by the future LISA mission might place constraints on the tidal Love numbers of the central object which are roughly 8 orders of magnitude more stringent than current ones on neutron stars, potentially probing all models of black hole mimickers proposed so far.Comment: Essay selected for an Honorable Mention in the Gravity Research Foundation Essay Competition 2019. v2: two references added, version to appear in IJMP

    Low latency search for Gravitational waves from BH-NS binaries in coincidence with Short Gamma Ray Bursts

    Full text link
    We propose a procedure to be used in the search for gravitational waves from black hole-neutron star coalescing binaries, in coincidence with short gamma-ray bursts. It is based on two recently proposed semi-analytic fits, one reproducing the mass of the remnant disk surrounding the black hole which forms after the merging as a function of some binary parameters, the second relating the neutron star compactness, i.e. the ratio of mass and radius, with its tidal deformability. Using a Fisher matrix analysis and the two fits, we assign a probability that the emitted gravitational signal is associated to the formation of an accreting disk massive enough to supply the energy needed to power a short gamma ray burst. This information can be used in low-latency data analysis to restrict the parameter space searching for gravitational wave signals in coincidence with short gamma-ray bursts, and to gain information on the dynamics of the coalescing system and on the internal structure of the components. In addition, when the binary parameters will be measured with high accuracy, it will be possible to use this information to trigger the search for off-axis gamma-ray bursts afterglows.Comment: 5 pages, 1 figure, changes in the introduction and in the concluding remarks. Accepted for publication in Phys. Rev.

    Solving the relativistic inverse stellar problem through gravitational waves observation of binary neutron stars

    Full text link
    The LIGO/Virgo collaboration has recently announced the direct detection of gravitational waves emitted in the coalescence of a neutron star binary. This discovery allows, for the first time, to set new constraints on the behavior of matter at supranuclear density, complementary with those coming from astrophysical observations in the electromagnetic band. In this paper we demonstrate the feasibility of using gravitational signals to solve the relativistic inverse stellar problem, i.e. to reconstruct the parameters of the equation of state (EoS) from measurements of the stellar mass and tidal Love number. We perform Bayesian inference of mock data, based on different models of the star internal composition, modeled through piecewise polytropes. Our analysis shows that the detection of a small number of sources by a network of advanced interferometers would allow to put accurate bounds on the EoS parameters, and to perform a model selection among the realistic equations of state proposed in the literature.Comment: minor changes to match the version published on PR

    Constraining the equation of state of nuclear matter with gravitational wave observations: Tidal deformability and tidal disruption

    Full text link
    We study how to extract information on the neutron star equation of state from the gravitational wave signal emitted during the coalescence of a binary system composed of two neutron stars or a neutron star and a black hole. We use post-Newtonian templates which include the tidal deformability parameter and, when tidal disruption occurs before merger, a frequency cut-off. Assuming that this signal is detected by Advanced LIGO/Virgo or ET, we evaluate the uncertainties on these parameters using different data analysis strategies based on the Fisher matrix approach, and on recently obtained analytical fits of the relevant quantities. We find that the tidal deformability is more effective than the stellar compactness to discriminate among different possible equations of state.Comment: 13 pages, 4 figures, 4 tables. Minor changes to match the version appearing on Phys. Rev.

    Gravitational waves in massive gravity theories: waveforms, fluxes and constraints from extreme-mass-ratio mergers

    Full text link
    Is the graviton massless? This problem was addressed in the literature at a phenomenological level, using modified dispersion relations for gravitational waves, in linearized calculations around flat space. Here, we perform a detailed analysis of the gravitational waveform produced when a small particle plunges or inspirals into a large non-spinning black hole. Our results should presumably also describe the gravitational collapse to black holes and explosive events such as supernovae. In the context of a theory with massive gravitons and screening, merging objects up to 1 Gpc1\,{\rm Gpc} away or collapsing stars in the nearby galaxy may be used to constrain the mass of the graviton to be smaller than ∼10−23 eV\sim 10^{-23}\,{\rm eV}, with low-frequency detectors. Our results suggest that the absence of dipolar gravitational waves from black hole binaries may be used to rule out entirely such theories.Comment: Important clarifications on screening and on our results added. Accepted for publication in Physical Review Letter

    The Photon Spectrum of Asymmetric Dark Stars

    Full text link
    Asymmetric Dark Stars, i.e., compact objects formed from the collapse of asymmetric dark matter could potentially produce a detectable photon flux if dark matter particles self-interact via dark photons that kinetically mix with ordinary photons. The morphology of the emitted spectrum is significantly different and therefore distinguishable from a typical black-body one. Given the above and the fact that asymmetric dark stars can have masses outside the range of neutron stars, the detection of such a spectrum can be considered as a smoking gun signature for the existence of these exotic stars.Comment: Minor changes to match the version published on IJMP

    Parameter estimation of gravitational wave echoes from exotic compact objects

    Full text link
    Relativistic ultracompact objects without an event horizon may be able to form in nature and merge as binary systems, mimicking the coalescence of ordinary black holes. The postmerger phase of such processes presents characteristic signatures, which appear as repeated pulses within the emitted gravitational waveform, i.e., echoes with variable amplitudes and frequencies. Future detections of these signals can shed new light on the existence of horizonless geometries, and provide new information on the nature of gravity in a genuine strong-field regime. In this work we analyze phenomenological templates used to characterize echolike structures produced by exotic compact objects, and we investigate for the first time the ability of current and future interferometers to constrain their parameters. Using different models with an increasing level of accuracy, we determine the features that can be measured with the largest precision, and we span the parameter space to find the most favorable configurations to be detected. Our analysis shows that current detectors may already be able to extract all the parameters of the echoes with good accuracy, and that multiple interferometers can measure frequencies and damping factors of the signals at the level of percent.Comment: References update

    Rotating proto-neutron stars: spin evolution, maximum mass and I-Love-Q relations

    Full text link
    Shortly after its birth in a gravitational collapse, a proto-neutron star enters in a phase of quasi-stationary evolution characterized by large gradients of the thermodynamical variables and intense neutrino emission. In few tens of seconds the gradients smooth out while the star contracts and cools down, until it becomes a neutron star. In this paper we study this phase of the proto-neutron star life including rotation, and employing finite temperature equations of state. We model the evolution of the rotation rate, and determine the relevant quantities characterizing the star. Our results show that an isolated neutron star cannot reach, at the end of the evolution, the maximum values of mass and rotation rate allowed by the zero-temperature equation of state. Moreover, a mature neutron star evolved in isolation cannot rotate too rapidly, even if it is born from a proto-neutron star rotating at the mass-shedding limit. We also show that the I-Love-Q relations are violated in the first second of life, but they are satisfied as soon as the entropy gradients smooth out.Comment: 15 pages, 9 figures, 7 tables; minor changes, and extended discussion on the I-Love-Q relation
    • …
    corecore